The Frattini module and p ′ - automorphisms of free pro - p groups
نویسنده
چکیده
If a non-trivial subgroup A of the group of continuous automorphisms of a noncyclic free pro-p group F has finite order, not divisible by p, then the group of fixed points FixF (A) has infinite rank. The semi-direct product F>!A is the universal p-Frattini cover of a finite group G, and so is the projective limit of a sequence of finite groups starting with G, each a canonical group extension of its predecessor by the Frattini module. Examining appearances of the trivial simple module 1 in the Frattini module’s Jordan-Hölder series arose in investigations ([FK97], [BaFr02] and [Sem02]) of modular towers. The number of these appearances prevents FixF (A) from having finite rank. For any group A of automorphisms of a group Γ, the set of fixed points FixΓ(A) := {g ∈ Γ | α(g) = g, ∀α ∈ A} of Γ under the action of A is a subgroup of Γ. Nielsen [N21] and, for the infinite rank case, Schreier [Schr27] showed that any subgroup of a free discrete group will be free. Tate (cf. [Ser02, I.§4.2, Cor. 3a]) extended this to free pro-p groups. In light of this, it is natural to ask for a free group F , what is the rank of FixF (A)? When F is a free discrete group and A is finite, Dyer and Scott [DS75] demonstrated that FixF (A) is a free factor of F , i.e. F is a free product of FixF (A) and another free subgroup of F , thus bounding the rank of FixF (A) by that of F itself. That this bound would hold for A that are merely finitely generated was a conjecture attributed to Scott; this was proven first by Gersten [Ge87] and later, independently, by Bestvina and Handel [BH92] in a Communicated by 2000 Mathematics Subject Classification(s): 14G32, 20C20, 20D25, 20E05, 20E18, 20F14, 20F28. Supported by RIMS and Michael D. Fried, October 26 November 1, 2001. University of California, Irvine, Irvine, CA 92697-3875, USA E-mail address: [email protected]
منابع مشابه
On the nilpotency class of the automorphism group of some finite p-groups
Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.
متن کامل2 F eb 2 00 6 Almost All p - Groups Have Automorphism Group a p - Group When p is Odd
Many common finite p-groups admit automorphisms of order coprime to p, and when p is odd, it is reasonably difficult to find finite p-groups with automorphism group a p-group. Yet the goal of this paper is to prove that almost all finite p-groups do have automorphism group a p-group when p is odd. The asymptotic sense in which the theorem holds involves bounding the Frattini length of the p-gro...
متن کاملFinite P-groups of Class 2 Have Noninner Automorphisms of Order P
We prove that for any prime number p, every finite non-abelian p-group G of class 2 has a noninner automorphism of order p leaving either the Frattini subgroup Φ(G) or Ω1(Z(G)) elementwise fixed.
متن کاملFrattini Extensions and Class Field Theory
A. Brumer has shown that every profinite group of strict cohomological p-dimension 2 possesses a class field theory the tautological class field theory. In particular, this result also applies to the universal p-Frattini extension G̃p of a finite group G. We use this fact in order to establish a class field theory for every p-Frattini extension π : G̃ → G (Thm.A). The role of the class field modu...
متن کاملSome properties of marginal automorphisms of groups
AbstractLet W be a non-empty subset of a free group. The automorphism of a group G is said to be a marginal automorphism, if for all x in G,x^−1alpha(x) in W^*(G), where W^*(G) is the marginal subgroup of G.In this paper, we give necessary and sufficient condition for a purelynon-abelian p-group G, such that the set of all marginal automorphismsof G forms an elementary abelian p-group.
متن کامل